
©2007, University of Colombo School of Computing 1

6. Object Oriented Concepts
and Techniques

Lesson 1:
Basics of Object Orientation – Part 2

©2007, University of Colombo School of Computing 2

6.3. Methods
• Methods are group of related statements in a class of objects that

act on themselves and on other classes and objects.

• Methods are used to accomplish specific tasks. Objects
communicate with each other using methods.

• Instance methods
– Apply to an instance object of the class.
– If the method makes a change to an individual object, it must be an

instance method.

• Class methods
– Apply to the class itself.

©2007, University of Colombo School of Computing 3

6.3. Methods
6.3.1. Defining methods
<modifier> <return type> <method name> (<parameter list>)
{

<statements>
}

• <modifier> is optional

• <return type> can be any primitive type or a class Name or void
(meaning that there is no return statement)

• Usually the <modifier> for methods is public and for attributes it is
private

©2007, University of Colombo School of Computing 4

6.3. Methods
6.3.2. Signature of a Method
• The <return type>, <method name> and the

<parameter list> defines the Signature of the method

• It is possible to define two ore more methods with the
same name within the same class with different
signatures. This is known as Method Overloading.
– For example,

public void CreatePoint()
{
}
public void CreatePoint(int x , int y)
{
}

©2007, University of Colombo School of Computing 5

6.3. Methods
6.3.3. Accessing methods
• An instance method can be accessed as:

<object name>.<method name>(<value list>);
– For example,

person1.SetName("Tom");

• An class method can be accessed as:
<class name>.<method name>(<value list>);

– For example,
Integer.parseInt("25");

©2007, University of Colombo School of Computing 6

6.3. Methods
6.3.4. Recursion
• A method might call another method from within its body. In fact, it

might even call itself. A method calling itself is known as recursion.

• Though this might seem a little odd, recursion is a very common and
versatile concept.

• Here example of method that implements the well known
mathematical function “factorial”.

public int factorial(int x)
{

if(x==0)
{

return 1;
}
return x*factorial(x);

©2007, University of Colombo School of Computing 7

6.4. Parameter Passing

• All primitive data types are passed by value. Any modifications done within
the method does not affect the original variable.

• Object types (instances of classes) and Arrays are passed by reference,
Any modifications done within the method affects the original variable.

• If you require to modify the original variables of primitive data types, and this
needs to be done by passing them to a method, we must declare the
primitive data type variables as instance variables in a class and pass an
object of that class to the method.

• Alternatively we can use wrapper classes. Wrapper classes are special
classes that represent primitive data types and hence can be passed
reference to methods.

– For example, the wrapper class Integer represents primitive data type int.

©2007, University of Colombo School of Computing 8

6.5. Constructor Methods
• These methods are used to initialize objects

• They have the same name as the class and have no
return type

• These methods are called automatically when the new
operator is used to allocate memory for an object.

• A class can have multiple Constructors (Overloaded
Constructors). They have either different number of
arguments or different types of arguments (that is, they
have different signatures)

©2007, University of Colombo School of Computing 9

6.5. Constructor Methods
6.5.1. Example for Constructors

public class TwoDimentionalPoint
{

private float x, y;
public TwoDimentionalPoint ()
{

x = 0;
y = 0;

}
public TwoDimentionalPoint (float a,float b)
{

x=a;
y=b;

}
}

• Note, the first constructor has no parameters passed to it. Also,
note that the constructor has been overloaded.

