
1

8. Error Handling 

Lesson 1: 
The idea behind Exceptions



2

8.1. Error Handling

• An Error is any unexpected result obtained from 
a program during execution.

• Unhandled errors may manifest themselves as 
incorrect results or behavior, or as abnormal 
program termination.

• Errors should be handled by the programmer, to 
prevent them from reaching the user.



3

8.1. Error Handling
8.1.2. Typical Errors
• Memory errors 

– e.g. memory incorrectly allocated, memory leaks, “null pointer”

• File system errors 
– e.g. disk is full, disk has been removed

• Network errors 
– e.g. network is down, URL does not exist

• Calculation errors 
– e.g. divide by 0

• Array errors 
– e.g. trying to access element with index –1

• Conversion errors 
– e.g. convert string “q” to a number



4

8.2. Why is error handling 
important?
• Users have high expectations for the code we produce.

• Users will use our programs in unexpected ways.

• Due to design errors or coding errors, our programs may 
fail in unexpected ways during execution

• It is our responsibility to produce quality code that does 
not fail unexpectedly.

• Consequently, we must design error handling into our 
programs.



5

8.3. Errors and Exceptions
• The term exception is shorthand for the phrase "exceptional event." 

An exception is an event, which occurs during the execution of a
program, that disrupts the normal flow of the program's instructions. 

• When an error occurs within a method, the method creates an object 
and hands it off to the runtime system. The object, called an 
exception object, contains information about the error, including its 
type and the state of the program when the error occurred. Creating 
an exception object and handing it to the runtime system is called 
throwing an exception. 

• After a method throws an exception, the runtime system attempts to 
find something to handle it. The set of possible "somethings" to 
handle the exception is the ordered list of methods that had been 
called to get to the method where the error occurred. The list of 
methods is known as the call stack (see the next figure). 



6

8.3. Errors and Exceptions (Cont..)

• The runtime system searches the call stack for a method that 
contains a block of code that can handle the exception. This block of 
code is called an exception handler. The search begins with the 
method in which the error occurred and proceeds through the call
stack in the reverse order in which the methods were called. When 
an appropriate handler is found, the runtime system passes the 
exception to the handler. 

• An exception handler is considered appropriate if the type of the 
exception object thrown matches the type that can be handled by 
the handler. The exception handler chosen is said to catch the 
exception. If the runtime system exhaustively searches all the 
methods on the call stack without finding an appropriate exception 
handler, as shown in the next figure, the runtime system (and, 
consequently, the program) terminates. 


