
©2007, University of Colombo School of Computing 1

3. Fundamentals of Java
Programming

Lesson 4:
Operators

©2007, University of Colombo School of Computing 2

3.7. Operators
• An operator is a function that has a special symbolic name and is

invoked by using that symbol with an expression.

• Java has several kinds of operators:
– Arithmetic Operators

• These are used to perform standard arithmetic operations performed on
numbers

– Assignment Operator
• This is used to assigns a variable with a value

– Logical (Boolean) Operators
• These are used to perform standard logical operations on Boolean values

– Bitwise Operators
• These perform operations on the individual bits of integers

– Conditional Operator
• This acts as a shorthand for if-then-else

©2007, University of Colombo School of Computing 3

3.7. Operators
3.7.1. Arithmetic Operators

=359%7Modulus%

=515/3Division/

=567*8Multiplication*

=815-7Subtraction-

=73+4Addition+

ExampleMeaning Symbol

©2007, University of Colombo School of Computing 4

3.7. Operators
3.7.2. Assignment Operator
• Assignment Operator (=)

• For example:
int a;
a = 5;

• Right side of Assignment operator is
evaluated first and then this value is
assigned to the Left side of the
Assignment operator

©2007, University of Colombo School of Computing 5

3.7. Operators
3.7.3. Logical (Boolean) Operators

= false!trueLogical NOT!

= truetrue || false Logical OR||

= falsetrue && falseLogical AND&&

ExampleMeaning Symbol

©2007, University of Colombo School of Computing 6

3.7. Operators
3.7.4. Bitwise Operator

Bitwise Compliment~

= 64256>>4Right Shift>>

= 161<<4Left Shift<<

= 1^0Bitwise XOR^

= 10 | 1 Bitwise OR|

= 00 & 1 Bitwise AND&

ExampleMeaning Symbol

©2007, University of Colombo School of Computing 7

3.7. Operators
3.7.5. Assignment Shortcuts
• Often in programming, we have to apply some operator to some variable

and then assign the resultant value back to the same variable. For example,
a = a + 5;

• Note, here we have two operations, one addition (a + 5) and one
assignment (a = …).

• Java provides shortcut operators that combine the two operations.
a += 5;

• Similarly we have, -=, *=, /=, %=, &=, |= etc.

• Very often we need to perform additions or subtractions by one (increments
or decrements), that is expressions of the form a = a + 1 or a = a - 1. These
can be done by the Increment Operator and Decrement Operator ++ and --.

a++;
a--;

©2007, University of Colombo School of Computing 8

3.7. Operators
3.7.6. Relational Operator

= true2<=3Less than or Equal<=

= false2>=3Greater than or Equal>=

= true2<3Less than<

= false2>3Greater than>

= true2!=3not Equal to!=

= false2==3Equal to==

ExampleMeaning Symbol

©2007, University of Colombo School of Computing 9

3.7. Operators
3.7.7. Conditional Operator
• Conditional Operator (?:)

• This operator has the form:
– (condition)?(value if true):(value if false)
– The condition is evaluated and if it is true value if true is

returned, otherwise value if false is returned.

• For example, if a and b were integers, the following
would return the maximum of a and b.
– (a>b)?a:b

• This is a short hand for “if-then-else”

©2007, University of Colombo School of Computing 10

3.7. Operators
3.7.8. Operator Precedence
• Consider the following expression

6+2*3

• This consists of two operations, one addition and one multiplication.

• The value of the expression depends on which of these operations is
performed first.

– If addition is performed first we get:
6+2*3 = (6+2)*3 = 8*3 = 24

– If multiplication is performed first we get:
6+2*3 = 6+(2*3) = 6+6 = 12

• To avoid ambiguity and confusion, java defines a clear order in which
operators are evaluated. This is known as operator precedence.

• According to operator precedence, the multiplication operator (*) has higher
precedence than the addition operator (+). Hence, the correct evaluation of
6+2*3 is 12.

©2007, University of Colombo School of Computing 11

3.7. Operators
3.7.8. Operator Precedence cont..

• The complete
operator
precedence is as
follows.

• Operators at the top
have higher
precedence.

• Operators at the
same level have
equal precedence

&= |= <<= etc. Lowest
Assignment Operators= += - = etc.

Conditional Operator ?:

||

Logical Operators&&

|

^

Bitwise Operators&

== !=

Comparison Operators< > <= >=

Bitwise Shift Operators<< >> >>>

+ -

Arithmetic Operators* / %

new

Increment Operators++ -- ! ~

. [] () Highest

