
©2007, University of Colombo School of Computing 1

6. Object Oriented Concepts
and Techniques

Lesson 2:
Encapsulation – Part 2

©2007, University of Colombo School of Computing 2

6.7. Encapsulation
6.7.3. static Modifier
• The static modifier specifies that a variable or method is the same for all

objects of a particular class.

• When a variable is declared as being static, it is only allocated once
regardless of how many objects are instantiated (Typically new variables
are allocated for each instance of a class).

• All instantiated objects share the same instances of the static variable.

• When you declare a method static, it is not instantiated with each object, but
is part of the entire class. Therefore you invoke the method by preceding it
with the class name.

static int refCount;
static int getRefCount()
{

return refCount
}

©2007, University of Colombo School of Computing 3

6.7. Encapsulation
6.7.4. abstract Modifier
• There are situations where you need to define a

class which declares the structure of a given
abstraction without providing a complete
implementation of every method.

• You can declare that certain methods are
required to be overridden by subclasses using
the abstract type modifier.

• Any class which contains any methods declared
abstract must also be declared abstract.

©2007, University of Colombo School of Computing 4

6.7. Encapsulation
6.7.4. abstract Modifier Cont…
• To declare a class abstract, you simply use the abstract keyword in

front of the class keyword at the beginning of
• the class declaration.

• Such classes cannot be directly instantiated with the new operator
since their complete implementation is undefined. You cannot
declare abstract constructors, or abstract static methods.

• Any subclass of an abstract class must either implement all of the
abstract methods in the super class, or be

• itself declared abstract.

abstract class Enemy
{

abstract void move();
abstract void move(int x, int y);

}

©2007, University of Colombo School of Computing 5

6.7. Encapsulation
6.7.5. final modifier
• All methods and instance variables may

be overridden by default.

• If you wish to declare that you want to no
longer allow subclasses to override your
variables or methods, you can declare
them final.

final int numDollars = 25;

©2007, University of Colombo School of Computing 6

6.7. Encapsulation
6.7.6. synchronised modifier
• The synchronised modifier is used to specify that a method is thread

safe.

• Only one path of execution is allowed into a synchronised method at
a time.

• In a multithreaded environment like Java, it is possible to have many
different paths of execution running through the same code

• The synchronized modifier changes this rule by only allowing a
single thread access to a method at once. This will force the others
to wait their turn. Threads and Multithreading covered in detail later

©2007, University of Colombo School of Computing 7

6.7. Encapsulation
6.7.7. volatile modifier
• The volatile modifier explicitly declares a

field as being potentially changed by
multiple threads asynchronously.

• May be modified by asynchronous threads

©2007, University of Colombo School of Computing 8

6.7. Encapsulation
6.7.8.native modifier
• Identify methods that have native

implementations. The native modifier informs the
Java compiler that the methods implementation
is in an external C file.

• native method declarations look different from
other Java methods. They have no body.

native int calctotal();

• Subclasses of any class containing your native
methods can still override them.

