8. Error Handling

Lesson 2:
Exception fundamentals




8.4. Fundamentals of Exceptions
8.4.1. Catch or Specify Requirement

Valid Java programming language code must honor the Catch or
Specify Requirement. This means that code that might throw
certain exceptions must be enclosed by either of the following:

— A try statement that catches the exception. The try must provide a

handler for the exception, as described in Catching and Handling
Exceptions.

— A method that specifies that it can throw the exception. The method
must provide a throws clause that lists the exception, as described in
Specifying the Exceptions Thrown by a Method.

Code that fails to honor the Catch or Specify Requirement will not
compile.

Not all exceptions are subject to the Catch or Specify Requirement.
To understand why, we need to look at the three basic kinds of
exceptions, only one of which is subject to the Requirement.




8.4. Fundamentals of Exceptions
8.4.2. Kinds of Exceptions

Java has three kinds of Exceptions: Checked Exceptions, Errors and
Runtime Exceptions

Checked Exceptions

— These are exceptional conditions that a well-written application should anticipate
and recover from.

— For example, suppose an application prompts a user for an input file name, then
opens the file by passing the name to the constructor for java.io.FileReader.
Normally, the user provides the name of an existing, readable file, so the
construction of the FileReader object succeeds, and the execution of the
application proceeds normally. But sometimes the user supplies the name of a
nonexistent file, and the constructor throws java.io.FileNotFoundException.

A well-written program will catch this exception and notify the user of the
mistake, possibly prompting for a corrected file name. Checked exceptions
are subject to the Catch or Specify Requirement.

All exceptions (except for those indicated by Error, RuntimeException, and
their subclasses) are checked exceptions,.

.




8.4.

Fundamentals of Exceptions

8.4.2. Kinds of Exceptions (cont...)

e Errors

These are exceptional conditions that are external to the application, and that the application
usually cannot anticipate or recover from.

For example, suppose that an application successfully opens a file for input, but is unable to
read the file because of a hardware or system malfunction. The unsuccessful read will throw
java.io.lOError. An application might choose to catch this exception, in order to notify the
user of the problem — but it also might make sense for the program to print a stack trace and
exit.

« Errors are not subject to the Catch or Specify Requirement. Errors are those
exceptions indicated by Error and its subclasses.

* Runtime Exceptions

These are exceptional conditions that are internal to the application, and that the application
usually cannot anticipate or recover from. These usually indicate programming bugs, such as
logic errors or improper use of an API.

For example, consider the application described previously that passes a file name to the
constructor for FileReader. If a logic error causes a null to be passed to the constructor, the
constructor will throw NullPointerException. The application can catch this exception, but it
probably makes more sense to eliminate the bug that caused the exception to occur.




