
©2007, University of Colombo School of Computing 1

6. Object Oriented Concepts 
and Techniques 

Lesson 4: 
Polymorphism



©2007, University of Colombo School of Computing 2

6.9. Polymorphism
• The Polymorphism is the quality of having more than one 

form.

• Combines Greek Words Poly and Morphism - Poly 
meaning Many and Morphism meaning Forms.

• In the context of Object Oriented Programming, 
polymorphism refers to the fact:

• A single operation can have different behavior in 
different objects.



©2007, University of Colombo School of Computing 3

6.9. Polymorphism
6.9.1. Overloading and Overriding
• It allows different forms of the same service to 

be defined. There are two common ways of 
implementing Polymorphism: Overloading and 
Overriding 

• Overloading 
– Using the same method name with different 

parameter type lists

• Overriding 
– Using different implementations of the same method 

in sub classes.



©2007, University of Colombo School of Computing 4

6.10. this and super keywords
6.10.1. this keyword
• The this keyword is used to refer to the 

current object. 

• It can be used to: 
– Refer to the current objects member variables
– Refer to current objects  methods
– Pass a reference to the current object to a 

method
– Return a reference current object



©2007, University of Colombo School of Computing 5

6.10. this and super keywords
6.10.1. this keyword (Cont …)
• The following refers to the member variable x in 

this object
t = this.x;

• The following refers calla the myMethod defined 
in this class and pass its this object as a 
parameter

this.myMethod(this);

• The following return the this Object
return this;



©2007, University of Colombo School of Computing 6

6.10. this and super keywords
6.10.2. super keyword
• The super keyword is used to refer to the super or parent class.

• The following refers invokes super class Constructor
super();

• The following refers invokes super class Constructor with  x and y
arguments

super(x,y);

• Calls the super class function called f()
super.f();


