6. Object Oriented Concepts
and Technigues

Lesson 1:
Basics of Object Orientation — Part 2

& ©2007, University of Colombo School of Computing 1
UCSC



6.3. Methods

 Methods are group of related statements in a class of objects that
act on themselves and on other classes and objects.

* Methods are used to accomplish specific tasks. Objects
communicate with each other using methods.

e Instance methods
— Apply to an instance object of the class.

— If the method makes a change to an individual object, it must be an
instance method.

e Class methods
— Apply to the class itself.

©2007, University of Colombo School of Computing

@ 2




6.3. Methods
6.3.1. Defining methods

<modifier> <return type> <method name> (<parameter list>)

{
}

<statements>

<modifier> is optional

<return type> can be any primitive type or a class Name or void
(meaning that there is no return statement)

Usually the <modifier> for methods is public and for attributes it is

private

©2007, University of Colombo School of Computing

@ 3




6.3. Methods
6.3.2. Signature of a Method

 The <return type>, <method name> and the
<parameter list> defines the Signature of the method

* |tis possible to define two ore more methods with the
same name within the same class with different
signatures. This is known as Method Overloading.

— For example,
public void CreatePoint()

{

}
public void CreatePoint(int x , int y)

©2007, University of Colombo School of Computing

@ 4



6.3. Methods
6.3.3. Accessing methods

 An Instance method can be accessed as:
<object name>.<method name>(<value list>);

— For example,
personl.SetName("Tom");

e An class method can be accessed as:
<class name>.<method name>(<value list>);

— For example,
Integer.parselint("25");

©2007, University of Colombo School of Computing

@ 5



6.3. Methods
6.3.4. Recursion

e A method might call another method from within its body. In fact, it
might even call itself. A method calling itself is known as recursion.

« Though this might seem a little odd, recursion is a very common and
versatile concept.

 Here example of method that implements the well known
mathematical function “factorial”.

public int factorial(int x)

{

if(x==0)
{

}

return x*factorial(x);

return 1;

©2007, University of Colombo School of Computing

@ 6




6.4. Parameter Passing

« All primitive data types are passed by value. Any modifications done within
the method does not affect the original variable.

» Object types (instances of classes) and Arrays are passed by reference,
Any maodifications done within the method affects the original variable.

« If you require to modify the original variables of primitive data types, and this
needs to be done by passing them to a method, we must declare the
primitive data type variables as instance variables in a class and pass an
object of that class to the method.

« Alternatively we can use wrapper classes. Wrapper classes are special
classes that represent primitive data types and hence can be passed
reference to methods.

— For example, the wrapper class Integer represents primitive data type int.

@ 7

©2007, University of Colombo School of Computing




6.5. Constructor Methods

 These methods are used to initialize objects

 They have the same name as the class and have no
return type

 These methods are called automatically when the new
operator is used to allocate memory for an object.

« A class can have multiple Constructors (Overloaded
Constructors). They have either different number of
arguments or different types of arguments (that is, they
have different signatures)

5 ©2007, University of Colombo School of Computing @ 8




6.5. Constructor Methods
6.5.1. Example for Constructors

public class TwoDimentionalPoint

{
private float x, y;
public TwoDimentionalPoint ()
{
X =0;
y=0;
}
public TwoDimentionalPoint (float a,float b)
{
X=a;
y=b;
}
}

 Note, the first constructor has no parameters passed to it. Also,
note that the constructor has been overloaded.

©2007, University of Colombo School of Computing

@ 9



