
1

8. Error Handling 

Lesson 4: 
Throwing exceptions



2

8.6. Throwing Exceptions
• Before you can catch an exception, some code somewhere must 

throw one. Any code can throw an exception: your code, code from
a package written by someone else such as the packages that come
with the Java platform, or the Java runtime environment. Regardless 
of what throws the exception, it's always thrown with the throw 
statement. 

• You can also create your own exception classes to represent 
problems that can occur within the classes you write. In fact, if you 
are a package developer, you might have to create your own set of 
exception classes to allow users to differentiate an error that can 
occur in your package from errors that occur in the Java platform or 
other packages. 



3

8.6. Throwing Exceptions
8.6.1. Throw Statement
• All methods use the throw statement to throw an 

exception. 

• The throw statement requires a single argument: 
a throwable object. Throwable objects are 
instances of any subclass of the Throwable 
class. 

• Here's an example of a throw statement. 
throws someThrowableObject;



4

8.6. Throwing Exceptions
8.6.2. Throwable Class and its Subclasses
• Class Throwable has two direct descendants: Error and 

Exception. 

• Error Class
– When a dynamic linking failure or other hard failure in the Java

virtual machine occurs, the virtual machine throws an Error. 
Simple programs typically do not catch or throw Errors. 

• Exception Class
– Most programs throw and catch objects that derive from the 

Exception class. An Exception indicates that a problem occurred,
but it is not a serious system problem. Most programs you write 
will throw and catch Exceptions as opposed to Errors. 



5

8.6. Throwing Exceptions
8.6.3. Chained Exceptions
• An application often responds to an exception by throwing another 

exception. 

• In effect, the first exception causes the second exception. It can be 
very helpful to know when one exception causes another. Chained 
Exceptions help the programmer do this. 

try 
{

…
} 
catch (IOException e) 
{

throws new SampleException("Other IOException", e);
}



6

8.7. Built-in Exceptions in Java
8.7.1. Runtime Exceptions
ArithmeticException
Arithmetic error, such as divide by zero.

ArrayIndexOutOfBoundsException
Array index is out of bounds.

ArrayStoreException
Assignment to an array element of an in compatible type

ClassCastException
Invalid cast

IllegalArgumentException
Illegal argument used to invoke a method

IllegalMonitorStateException
Illegal monitor operation, such as waiting on an 

unlocked thread.

IllegalStateException
Environment or application is in incorrect state

IllegalThreadStateException
Requested operation not compatible with current thread 

state

IndexOutOfBoundsException
Some type of Index is out of bounds

NegativeArraySizeExeption
Array created with the negative size

NullpointerException
Invalid use of null exception

NumberFormatException
Invalid conversion of a string to a numeric format

SecurityException
Attempt to violate security

StringIndexOutOfBounds
Attempt to index outside the bounds of a string

UnsupportedOperationException
An unsupported operation was encountered



7

8.7. Built-in Exceptions in Java
8.7.2. Checked Exceptions
ClassnotFoundException
Class not found

CloneNotSupportedException
Attempt to clone an object that does not implement the cloneable interface

IllegalAccessException
Access to a class is denied

InstantiationException
Attempt to create an Object of an abstract class or interface

InterruptedException
One thread has been interrupted by another thread

NoSuchFieldException
A requested field does not exist

NoSuchMethodException
A requested method does not exist



8

8.8. Creating your own Exception 
Classes
• You can create your own exception 

classes by extending any exception class.

class MyNewException extends Exception
{

...
}


